Variational approach to fractal reaction-diffusion equations with fractal derivatives
نویسندگان
چکیده
A fractal modification of the reaction-diffusion process is proposed with derivatives, and a variational principle established in space. The concentration substrate can be determined according to minimal value formulation. solution illustrated step by for ease applications engineering, effect dimensions on morphology elucidated graphically.
منابع مشابه
Variational Principle for the Generalized KdV-Burgers Equation with Fractal Derivatives for Shallow Water Waves
The unsmooth boundary will greatly affect motion morphology of a shallow water wave, and a fractal space is introduced to establish a generalized KdV-Burgers equation with fractal derivatives. The semi-inverse method is used to establish a fractal variational formulation of the problem, which provides conservation laws in an energy form in the fractal space and possible solution structures of t...
متن کاملAnomalous diffusion modeling by fractal and fractional derivatives
This paper makes an attempt to develop a fractal derivative model of anomalous diffusion. We also derive the fundamental solution of the fractal derivative equation for anomalous diffusion, which characterizes a clear power law. This new model is compared with the corresponding fractional derivative model in terms of computational efficiency, diffusion velocity, and heavy tail property. The mer...
متن کاملA variational approach to reaction diffusion equations with forced speed in dimension 1
We investigate in this paper a scalar reaction diffusion equation with a nonlinear reaction term depending on x − ct. Here, c is a prescribed parameter modelling the speed of climate change and we wonder whether a population will survive or not, that is, we want to determine the large-time behaviour of the associated solution. This problem has been solved recently when the nonlinearity is of KP...
متن کاملChaotic and fractal properties of deterministic diffusion-reaction processes.
We study the consequences of deterministic chaos for diffusion-controlled reaction. As an example, we analyze a diffusive-reactive deterministic multibaker and a parameter-dependent variation of it. We construct the diffusive and the reactive modes of the models as eigenstates of the Frobenius-Perron operator. The associated eigenvalues provide the dispersion relations of diffusion and reaction...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Thermal Science
سال: 2021
ISSN: ['0354-9836', '2334-7163']
DOI: https://doi.org/10.2298/tsci200301042w